1塑料韌性的性能表征
一. 剛性越大材料越不容易發(fā)生形變,韌性越大則越容易發(fā)生形變。
韌性與剛性相對,是反映物體形變難易程度的一個屬性,剛性越大材料越不容易發(fā)生形變,韌性越大則越容易發(fā)生形變。通常,剛性越大,材料的硬度、拉伸強度、拉伸模量(楊氏模量)、彎曲強度、彎曲模量均較大;反之,韌性越大,斷裂伸長率和沖擊強度就越大。
二. 不同的沖擊試驗方法所得到的結果是不能進行比較的
沖擊試驗的方法很多,依據試驗溫度分:有常溫沖擊、低溫沖擊和高溫沖擊三種;不同材料或不同用途可選擇不同的沖擊試驗方法,并得到不同的結果,這些結果是不能進行比較的。
2塑料增韌機理及影響因素
一. 銀紋-剪切帶理論
在橡膠增韌塑料的共混體系中,橡膠顆粒的作用主要有兩個方面:一方面,作為應力集中的中心,誘發(fā)基體產生大量的銀紋和剪切帶;另一方面,控制銀紋的發(fā)展使銀紋及時終止而不致發(fā)展成破壞性的裂紋。
例如,HIPS基體韌性較小,銀紋化,應力發(fā)白,銀紋化體積增加,橫向尺寸基本不變,拉伸無細頸;增韌PVC,基體韌性大,屈服主要由剪切帶造成,有細頸,無應力發(fā)白;HIPS/PPO,銀紋、剪切帶都占有相當比例,細頸和應力發(fā)白現象同時產生。
二. 影響塑料增韌效果的因素
1. 基體樹脂的特性
研究表明,提高基體樹脂的韌性有利于提高增韌塑料的增韌效果,提高基體樹脂的韌性可通過以下途徑實現:增大基體樹脂的分子量,使分子量分布變得窄小;通過控制是否結晶以及結晶度、晶體尺寸和晶型等提高韌性。例如,PP中加入成核劑提高結晶速率,細化晶粒,從而提高斷裂韌性。
2. 增韌劑的特性和用量:
1)增韌劑分散相粒徑的影響——對于彈性體增韌塑料,基體樹脂的特性不同,彈性體分散相粒徑的較佳值也不相同。例如,HIPS中橡膠粒徑較佳值為0.8-1.3μm,ABS較佳粒徑為0.3μm左右,PVC改性的ABS其較佳粒徑為0.1μm左右。
2)增韌劑用量的影響——增韌劑的加入量存在一個較佳值,這與粒子間距參數有關;
3)增韌劑玻璃化轉變溫度的影響——一般彈性體的玻璃化溫度越低,增韌效果越好;
4)增韌劑與基體樹脂界面強度的影響——界面粘結強度對增韌效果的影響不同體系有所不同;
5)彈性體增韌劑結構的影響——與彈性體類型、交聯度等有關。
3塑料增韌劑有哪些?如何劃分?
一. 塑料常用的增韌劑如何劃分
1.1 橡膠彈性體增韌:EPR(二元乙丙)、EPDM(三元乙丙)、順丁橡膠(BR)、天然橡膠(NR)、異丁烯橡膠(IBR)、丁腈橡膠(NBR)等;適用于所用塑料樹脂的增韌改性;
1.2 熱塑性彈性體增韌:SBS、SEBS、POE、TPO、TPV等;多用于聚烯烴或非極性樹脂增韌,用于聚酯類、聚酰胺類等含有極性官能團的聚合物增韌時需加入相容劑;
1.3 核-殼共聚物及反應型三元共聚物增韌:ACR(丙烯酸酯類)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸縮水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸縮水甘油酯共聚物)等;多用于工程塑料以及耐高溫高分子合金增韌
1.4 高韌性塑料共混增韌:PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、 PC/ABS、 PC/PBT等;高分子合金技術是制備高韌性工程塑料的重要途徑;
1.5 其它方式增韌:納米粒子增韌(如納米CaCO3)、沙林樹脂(杜邦金屬離聚物)增韌等。
4塑料增韌關鍵在于增容
前面提到的幾類接枝共聚物作為增韌劑時,都會與基體產生強烈的相互作用,例如:
1. 帶環(huán)氧官能團型增韌機理:環(huán)氧基團開環(huán)后與聚合物端羥基、羧基或胺基發(fā)生加成反應;
2. 核殼型增韌機理:外層官能團與組分充分相容,橡膠起到增韌效果;
3. 離聚體型增韌機理:借助金屬離子與高分子鏈的羧酸根之間的絡合作用形成物理交聯網絡,從而起到增韌的作用。
實際上,如果把增韌劑看作一類聚合物,就可以把這種增容原理延伸到所有的高分子共混物中。如下表,工業(yè)上制備有用的聚合物共混物時,反應性增容是我們必須要運用的技術,此時增韌劑就有了不一樣的意義,“增韌相容劑”,“界面乳化劑”的稱謂就顯得格外形象。
5結語
綜上所述,塑料增韌無論對于結晶性塑料還是無定形塑料同等重要,而從通用塑料、工程塑料到特種工程塑料其耐熱性逐漸提高,成本價格也不斷攀升,這樣就對增韌劑的耐熱性、耐老化性等提出了更高的要求,同時也是對塑料改性增韌技術一次大的考驗,而較重要的也是較關鍵的一條就是和基體及組分保持良好的相容性。